Login / Signup

Pseudo-heterostructure and condensation of 1D moiré excitons in twisted phosphorene bilayers.

Hongli GuoXu ZhangGang Lu
Published in: Science advances (2023)
Heterostructures are not expected to form in a single homogeneous material. Here, we show that planar pseudo-heterostructures could emerge in a twisted bilayer of phosphorene (tbP), driving in-plane energy and charge transfer. The formation of moiré superlattices combined with electronic anisotropy in tbPs yields one-dimensional (1D) moiré excitons with long radiative and nonradiative lifetimes, large binding energies, and deep moiré potentials. Low-frequency moiré phonons and dynamic moiré potentials are revealed to be responsible for the in-plane energy/charge transfer and exciton dynamics. The 1D moiré excitons are predicted to exhibit Bose-Einstein condensation at high temperatures and may lead to exotic Tonks-Girardeau Bose gases.
Keyphrases
  • molecular dynamics simulations
  • density functional theory