Login / Signup

Enzymatic Formation of a Skipped Methyl-Substituted Octaprenyl Side Chain of Longestin (KS-505a): Involvement of Homo-IPP as a Common Extender Unit.

Taro OzakiSandip S ShindeLei GaoRyo OkuizumiChengwei LiuYasushi OgasawaraXiaoguang LeiTohru DairiAtsushi MinamiHideaki Oikawa
Published in: Angewandte Chemie (International ed. in English) (2018)
Longestin (KS-505a), a specific inhibitor of phosphodiesterase, is a meroterpenoid that consists of a unique octacyclic terpene skeleton with branched methyl groups at unusual positions (C1 and C12). Biochemical analysis of Lon23, a methyltransferase involved in the biosynthesis of longestin, demonstrated that it methylates homoisopentenyl diphosphate (homo-IPP) to afford (3Z)-3-methyl IPP. This compound, along with IPP, is selectively accepted as extender units by Lon22, a geranylgeranyl diphosphate (GGPP) synthase homologue, to yield dimethylated GGPP (dmGGPP). The absolute configuration of dmGGPP was determined to be (4R,12R) by degradation and chiral GC analysis. These findings allowed us to propose an enzymatic sequence for key steps of the biosynthetic pathway of the unusual homoterpenoid longestin.
Keyphrases
  • hydrogen peroxide
  • molecular docking
  • ionic liquid
  • nitric oxide
  • gas chromatography
  • amino acid