Login / Signup

Toward Accurate Predictions of Atomic Properties via Quantum Mechanics Descriptors Augmented Graph Convolutional Neural Network: Application of This Novel Approach in NMR Chemical Shifts Predictions.

Peng GaoJie ZhangYuzhu SunJianguo Yu
Published in: The journal of physical chemistry letters (2020)
In this study, an augmented Graph Convolutional Network (GCN) with quantum mechanics (QM) descriptors was reported for its accurate predictions of NMR chemical shifts with respect to experimental values. The prediction errors of 13C/1H NMR chemical shifts can be as small as 2.14/0.11 ppm. There are two crucial characteristics for this modified GCN: in one aspect, such a novel neural network could efficiently extract the overall molecule structure information; in another aspect, it could accurately solve the chemical environment of the target atom. As there exists an imperfect linear regression between the experimental NMR chemical shifts (δ) and the density functional theory (DFT) calculated isotropic shielding constants (σ), the inclusion of QM descriptors within GCN can largely improve its performance. Moreover, few-shot learning also becomes feasible with these descriptors. The success of this novel GCN in chemical shifts predictions also indicates its potential applicability for other computational studies.
Keyphrases