Login / Signup

Impact of Vaping Regimens on Electronic Cigarette Efficiency.

Sebastien SouletMarie DuquesneJean ToutainCharly PairaudMaud Mercury
Published in: International journal of environmental research and public health (2019)
Most recent studies on electronic cigarettes (e-cigs) have been carried out using vaping regimens consistent with mouth-to-lung inhalation (MTL) and not with direct-to-lung (DTL) inhalation. This paper aimed to characterizing the influence of inhalation properties (puff duration, puff volume, airflow rate) on the mass of vaporized e-liquid (MVE). Because the literature on DTL is non-existent, an intense vaping regimen consistent with DTL inhalation (i.e., puff volume = 500 mL) was defined. The use of a low or standard (ISO/DIS 20768) regimen and the proposed intense vaping regimen were first compared using the Cubis 1 Ω atomizer on a large power range, and then by using two atomizers below 1 Ω and two others above 1 Ω on their respective power ranges. An analysis of the e-cig efficiency on the e-liquid vaporization was proposed and calculated for each MVE. The intense vaping regimen allowed a broader power range in optimal heating conditions. MVE linearly increased with the supplied power, up to over-heating conditions at higher powers. Moreover, the e-cigs' efficiencies were higher when low-resistance atomizers were tested at high powers. All these results highlighted that the generated vapor might be better evacuated when an intense vaping regimen is used, and illustrate the obvious need to define a suitable standardized vaping regimen consistent with DTL inhalation.
Keyphrases
  • systematic review
  • smoking cessation
  • ionic liquid