Cloning and characterization of luciferase from an Asian firefly Pygoluciola qingyu and its comparison with other beetle luciferases.
Jun LiWei LiuGuichun LiuZhiwei DongJinwu HeRuoping ZhaoWen WangXue-Yan LiPublished in: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology (2024)
The bioluminescence system of luminescent beetles has extensive applications in biological imaging, protein labeling and drug screening. To explore wild luciferases with excellent catalytic activity and thermal stability, we cloned the luciferase of Pygoluciola qingyu, one species living in areas of high temperature and with strong bioluminescence, by combining transcriptomic sequencing and reverse transcription polymerase chain reaction (RT-PCR). The total length of luciferase gene is 1638 bp and the luciferase consists 544 amino acids. The recombinant P. qingyu luciferase was produced in vitro and its characteristics were compared with those of eight luciferases from China firefly species and two commercial luciferases. Compared with these luciferases, the P. qingyu luciferase shows the highest luminescence activity at room temperature (about 25-28 ℃) with similar K M value for D-luciferin and ATP to the Photinus pyralis luciferase. The P. qingyu luciferase activity was highest at 35 ℃ and can keep high activity at 30-40 ℃, which suggests the potential of P. qingyu luciferase for in vivo and cell application. Our results provide new insights into P. qingyu luciferase and give a new resource for the application of luciferases.