Login / Signup

Femtogram-Sensitive Cantilever Platform for Dynamic Graphene Oxide Nanosheet Monitoring.

Pei-Ying LinSheng-Han ChengYu-Chieh HsuDavid E BeckShu-Chen Hsieh
Published in: Analytical chemistry (2024)
This study introduces a new approach to optimizing graphene oxide (GO) properties using liquid-phase plasma treatment in a microenvironment. Our innovation exploits atomic force microscopy (AFM) cantilever frequency tracking to monitor mass variations in GO, which are indicative of surface oxidation-reduction processes or substituent doping (boron/nitrogen). Complementary in situ Raman spectroscopy has observed D/G band shifts, and X-ray photoelectron spectroscopy (XPS) determined the C/O ratio and B/N doping levels pre- and post-treatment, confirming chemical tuning to GO. We can achieve femtogram-level precision in detecting nanomaterial mass changes by correlating elemental ratios with AFM cantilever frequency measurements. This multifaceted approach not only enhances our understanding of the chemical properties of GO but also establishes a new, versatile method for monitoring, modifying, and optimizing the properties of nanomaterials.
Keyphrases