Login / Signup

Ammonia-Assisted Proton Transfer Reaction Mass Spectrometry for Detecting Triacetone Triperoxide (TATP) Explosive.

Qiangling ZhangXue ZouQu LiangHongmei WangChaoqun HuangChengyin ShenYannan Chu
Published in: Journal of the American Society for Mass Spectrometry (2018)
Proton transfer reaction mass spectrometry (PTR-MS) usually detects different types of compounds by changing the discharge gas to produce different reagent ions in the ion source. In the present work, a novel method of changing reagent ions, ammonia-assisted PTR-MS, was developed. Through an injection port bypass, ammonia was injected into a homemade PTR-MS device. A conventional PTR-MS apparatus with reagent ions H3O+(H2O)n (n = 0, 1, 2) can be converted to an ammonia-assisted PTR-MS with reagent ions NH4+.The new method was introduced to detect triacetone triperoxide (TATP) explosive material. Results showed that the sensitivity is enhanced more than 37 times compared with TATP detection using conventional PTR-MS and the limit of detection (LOD) could reach 1.3 ppb. TATP in real complex matrixes can also be detected successfully using this method. Compared to conventional PTR-MS, ammonia-assisted PTR-MS has better sensitivity and better LOD for TATP detection, and the technique provides common users with a convenient and quick method to change reagent ions. The users of PTR-MS can easily obtain other reagent ions by injecting different assisted gases into an injection port to meet different detection needs. Graphical Abstract.
Keyphrases