Chiral Control of Carbon Dots via Surface Modification for Tuning the Enzymatic Activity of Glucose Oxidase.
Mengling ZhangYurong MaHuibo WangBo WangYunjie ZhouYang LiuMingwang ShaoHui HuangFang LuZhen-Hui KangPublished in: ACS applied materials & interfaces (2021)
Chiral carbon dots (CDs) integrated the advantages of achiral CDs and the unique chiral property, which expand the prospect of the biological applications of CDs. However, the structure control and the origin of chirality for chiral CDs remain unclear. Herein, chiral CDs were obtained by thermal polymerization of chiral amino acids and citric acid, and their handedness of chirality could be controlled by adjusting the reaction temperature, which leads to different kinds of surface modifications. With aliphatic amino acids as a chiral source, all of the CDs that reacted at different temperatures (90-200 °C) have the same handedness of the chiral source. But with aromatic amino acids as a chiral source, CDs with maintained or inversed handedness compared with the chiral source could be obtained by adjusting the reaction temperature. Below a temperature of 120 °C, the chiral source was modified with CDs by esterification and transferred the handedness of chirality; at high temperatures (above 150 °C), which mainly connected by amidation accompanying with the formation of rigid structure generated by the π conjugation between the aromatic nucleus of chiral source and the carbon core of CDs, caused the inversing of the chiral signal. Further, we investigated the chiral effects of CDs on the glucose oxidase activity for a highly sensitive electrochemical biosensor.