Login / Signup

Deep Learning-Assisted Triboelectric Smart Mats for Personnel Comprehensive Monitoring toward Maritime Safety.

Yan WangZhiyuan HuJunpeng WangXiangyu LiuQiongfeng ShiYawei WangLin QiaoYahui LiHengyi YangJianhua LiuLeyan ZhouZhuoqing YangChengkuo LeeMinyi Xu
Published in: ACS applied materials & interfaces (2022)
Monitoring the crew of a ship can be performed by combining sensors and artificial intelligence methods to process sensing data. In this study, we developed a deep learning (DL)-assisted minimalist structure triboelectric smart mat system for obtaining abundant crew information without the privacy concerns of taking video. The smart mat system is fabricated using a conductive sponge with different filling rates and a fluorinated ethylene propylene membrane. The proposed dual-channel measurement method improves the stability of the generated signal. Comprehensive crew and cargo monitoring, including personnel and status identification, as well as positioning and counting functions are realized by the DL-assisted triboelectric smart mat system according to the analysis of instant sensory data. Real-time monitoring of crews through fixed and mobile devices improves the ability and efficiency of handling emergencies. The smart mat system provides privacy concerns and an effective way to build ship Internet of Things and ensure personnel safety.
Keyphrases
  • artificial intelligence
  • deep learning
  • big data
  • machine learning
  • health information
  • convolutional neural network
  • electronic health record
  • healthcare
  • social media
  • reduced graphene oxide