Antioxidant Mechanisms of Echinatin and Licochalcone A.
Minshi LiangXican LiXiaojian OuyangHong XieDongfeng ChenPublished in: Molecules (Basel, Switzerland) (2018)
Echinatin and its 1,1-dimethyl-2-propenyl derivative licochalcone A are two chalcones found in the Chinese herbal medicine Gancao. First, their antioxidant mechanisms were investigated using four sets of colorimetric measurements in this study. Three sets were performed in aqueous solution, namely Cu2+-reduction, Fe3+-reduction, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging measurements, while 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging colorimetric measurements were conducted in methanol solution. The four sets of measurements showed that the radical-scavenging (or metal-reduction) percentages for both echinatin and licochalcone A increased dose-dependently. However, echinatin always gave higher IC50 values than licochalcone A. Further, each product of the reactions of the chalcones with DPPH• was determined using electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The UPLC-ESI-Q-TOF-MS/MS determination for echinatin yielded several echinatin⁻DPPH adduct peaks (m/z 662, 226, and 196) and dimeric echinatin peaks (m/z 538, 417, and 297). Similarly, that for licochalcone A yielded licochalcone A-DPPH adduct peaks (m/z 730, 226, and 196) and dimeric licochalcone A peaks (m/z 674 and 553). Finally, the above experimental data were analyzed using mass spectrometry data analysis techniques, resonance theory, and ionization constant calculations. It was concluded that, (i) in aqueous solution, both echinatin and licochalcone A may undergo an electron transfer (ET) and a proton transfer (PT) to cause the antioxidant action. In addition, (ii) in alcoholic solution, hydrogen atom transfer (HAT) antioxidant mechanisms may also occur for both. HAT may preferably occur at the 4-OH, rather than the 4'-OH. Accordingly, the oxygen at the 4-position participates in radical adduct formation (RAF). Lastly, (iii) the 1,1-dimethyl-2-propenyl substituent improves the antioxidant action in both aqueous and alcoholic solutions.
Keyphrases
- aqueous solution
- mass spectrometry
- liquid chromatography
- tandem mass spectrometry
- gas chromatography
- electron transfer
- simultaneous determination
- oxidative stress
- high performance liquid chromatography
- ms ms
- data analysis
- anti inflammatory
- ultra high performance liquid chromatography
- high resolution mass spectrometry
- solid phase extraction
- gold nanoparticles
- capillary electrophoresis
- high resolution
- multiple sclerosis
- liver injury
- fluorescent probe
- machine learning
- energy transfer
- electronic health record
- molecular dynamics simulations
- living cells
- ionic liquid
- atomic force microscopy