Ketamine and its metabolite 2R,6R-hydroxynorketamine promote ocular dominance plasticity and release tropomyosin-related kinase B from inhibitory control without reducing perineuronal nets enwrapping parvalbumin interneurons.
Cecilia CannarozzoAnna RubioloPlinio Cabrera CasarottoEero CastrenPublished in: The European journal of neuroscience (2023)
Ketamine has been described as a fast-acting antidepressant, exerting effects in depressed patients and in preclinical models with a rapid onset of action. The typical antidepressant fluoxetine is known to induce plasticity in the adult rodent visual cortex, as assessed by a shift in ocular dominance, a classical model of brain plasticity, and a similar effect has been described for ketamine and its metabolite 2R,6R-hydroxynorketamine (R,R-HNK). Here, we demonstrate that ketamine (at 3 or 20 mg/kg) and R,R-HNK facilitated the shift in ocular dominance in monocularly deprived mice, after three injections, throughout the 7-day monocular deprivation regimen. Notably, the comparison between the treatments indicates a higher effect size of R,R-HNK compared with ketamine. Treatment with ketamine or R,R-HNK failed to influence the levels of perineuronal nets (PNNs) surrounding parvalbumin-positive interneurons. However, we observed in vitro that both ketamine and R,R-HNK are able to disrupt the tropomyosin-related kinase B (TRKB) interaction with the protein tyrosine phosphatase sigma (PTPσ), which upon binding to PNNs dephosphorylates TRKB. These results support a model where diverse drugs promote the reinstatement of juvenile-like plasticity by directly binding TRKB and releasing it from PTPσ regulation, without necessarily reducing PNNs deposits.
Keyphrases
- pain management
- major depressive disorder
- end stage renal disease
- ejection fraction
- newly diagnosed
- protein kinase
- chronic kidney disease
- type diabetes
- stem cells
- binding protein
- tyrosine kinase
- multiple sclerosis
- small molecule
- chronic pain
- bone marrow
- adipose tissue
- white matter
- peritoneal dialysis
- metabolic syndrome
- skeletal muscle
- cell therapy
- functional connectivity
- prefrontal cortex