Login / Signup

Dual-Color Peak Force Infrared Microscopy.

Qing XieJared WiemannYan YuXiaoji G Xu
Published in: Analytical chemistry (2021)
Peak force infrared (PFIR) microscopy achieves nanoscale infrared imaging at sub-10 nm spatial resolution through photothermal mechanical detection of atomic force microscopy (AFM). However, it suffers from a major limitation that only one infrared frequency can be scanned for an AFM frame at a time. To overcome this limitation, we report here dual-color PFIR microscopy that enables simultaneous imaging at two infrared frequencies. This dual-color PFIR microscopy bypasses the limitations of frame drift and distortion of AFM when comparing two images of different infrared frequencies. We benchmark the performance and spatial resolution of this method using structured polymers exhibiting phase separation. We further demonstrate the application of this technique in imaging biological samples by mapping the cell wall of Escherichia coli ( E. coli ) bacteria. The presence of a bacterial outer membrane was detected without extrinsic labels. This dual-color PFIR microscopy enables simultaneous nondestructive chemical nanoimaging of multiple chemical components and will be useful for potential applications such as in situ dual-channel monitoring of chemical reactions.
Keyphrases