Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques.
Matthew A PronschinskeSteven R CorsiCeleste HockingsPublished in: PloS one (2023)
In an investigation of pharmaceutical contamination in the Lac du Flambeau Chain of Lakes (hereafter referred to as "the Chain"), few contaminants were detected; only eight pharmaceuticals and one pesticide were identified among the 110 pharmaceuticals and other organic contaminants monitored in surface water samples. This study, conducted in cooperation with the Lac du Flambeau Tribe's Water Resource Program, investigated these organic contaminants and potential biological effects in channels connecting lakes throughout the Chain, including the Moss Lake Outlet site, adjacent to the wastewater treatment plant lagoon. Of the 6 sites monitored and 24 samples analyzed, sample concentrations and contaminant detection frequencies were greatest at the Moss Lake Outlet site; however, the concentrations and detection frequencies of this study were comparable to other pharmaceutical investigations in basins with similar characteristics. Because established water-quality benchmarks do not exist for the pharmaceuticals detected in this study, alternative screening-level water-quality benchmarks, developed using two U.S. Environmental Protection Agency toxicological resources (ToxCast database and ECOTOX knowledgebase), were used to estimate potential biological effects associated with the observed contaminant concentrations. Two contaminants (caffeine and thiabendazole) exceeded the prioritization threshold according to ToxCast alternative benchmarks, and four contaminants (acetaminophen, atrazine, caffeine, and carbamazepine) exceeded the prioritization threshold according to ECOTOX alternative benchmarks. Atrazine, an herbicide, was the most frequently detected contaminant (79% of samples), and it exhibited the strongest potential for biological effects due to its high estimated potency. Insufficient toxicological information within ToxCast and ECOTOX for gabapentin and methocarbamol (which had the two greatest concentrations in this study) precluded alternative benchmark development. This data gap presents unknown potential environmental impacts. Future research examining the biological effects elicited by these two contaminants as well as the others detected in this study would further elucidate the ecological relevance of the water chemistry results generated though this investigation.