Monochromatic breast computed tomography with synchrotron radiation: phase-contrast and phase-retrieved image comparison and full-volume reconstruction.
Luca BrombalBruno GolosioFulvia ArfelliDeborah BonazzaAdriano ContilloPasquale DeloguSandro DonatoGiovanni MettivierPiernicola OlivaLuigi RigonAngelo TaibiGiuliana TrombaFabrizio ZanconatiRenata LongoPublished in: Journal of medical imaging (Bellingham, Wash.) (2018)
A program devoted to performing the first in vivo synchrotron radiation (SR) breast computed tomography (BCT) is ongoing at the Elettra facility. Using the high spatial coherence of SR, phase-contrast (PhC) imaging techniques can be used. The latest high-resolution BCT acquisitions of breast specimens, obtained with the propagation-based PhC approach, are herein presented as part of the SYRMA-3D collaboration effort toward the clinical exam. Images are acquired with a 60 - μ m pixel dead-time-free single-photon-counting CdTe detector. The samples are imaged at 32 and 38 keV in a continuous rotating mode, delivering 5 to 20 mGy of mean glandular dose. Contrast-to-noise ratio (CNR) and spatial resolution performances are evaluated for both PhC and phase-retrieved images, showing that by applying the phase-retrieval algorithm a five-time CNR increase can be obtained with a minor loss in spatial resolution across soft tissue interfaces. It is shown that, despite having a poorer CNR, PhC images can provide a sharper visualization of microcalcifications, thus being complementary to phase-retrieved images. Furthermore, the first full-volume scan of a mastectomy sample ( 9 × 9 × 3 cm 3 ) is reported. This investigation into surgical specimens indicates that SR BCT in terms of CNR, spatial resolution, scan duration, and scan volume is feasible.