Login / Signup

Record-High Electron Mobility Exceeding 16 cm 2 V - 1 s - 1 in Bisisoindigo-Based Polymer Semiconductor with a Fully Locked Conjugated Backbone.

Weifeng ZhangKeli ShiJing LaiYankai ZhouXuyang WeiQian CheJinbei WeiLiping WangGui Yu
Published in: Advanced materials (Deerfield Beach, Fla.) (2023)
Polymer semiconductors with mobilities exceeding 10 cm 2 V - 1 s - 1 , especially ambipolar and n-type polymer semiconductors, are still rare, although they are of great importance for fabricating polymer field-effect transistors (PFETs) toward commercial high-grade electronics. Herein, two novel donor-acceptor copolymers, PNFFN-DTE and PNFFN-FDTE, are designed and synthesized based on the electron-deficient bisisoindigo (NFFN) and electron-rich dithienylethylenes (DTE or FDTE). The copolymer PNFFN-DTE, containing NFFN and DTE, possesses a partially locked polymeric conjugated backbone, whereas PNFFN-FDTE, containing NFFN and FDTE, has a fully locked one. Fluorine atoms in FDTE not only induce the formation of additional CH∙∙∙F hydrogen bonds, but also lower frontier molecular orbitals for PNFFN-FDTE. Both PNFFN-DTE and PNFFN-FDTE form more ordered molecular packing in thin films prepared from a polymer solution in bicomponent solvent containing 1,2-dichlorobenzene (DCB) and 1-chloronaphthalene (with volume ratio of 99.2/0.8) than pure DCB. The two copolymers-based flexible PFETs exhibit ambipolar charge-transport properties. Notably, the bicomponent solvent-processed PNFFN-FDTE-based PFETs afford a high electron mobility of 16.67 cm 2 V -1 s -1 , which is the highest electron-transport mobility for PFETs reported so far. The high electron mobility of PNFFN-FDTE is attributed to its fully locked conjugated backbone, dense molecular packing, and much matched LUMO energy level.
Keyphrases
  • solar cells
  • high grade
  • photodynamic therapy
  • electron transfer
  • electron microscopy
  • drug delivery
  • single molecule
  • ionic liquid
  • room temperature
  • density functional theory
  • pet ct