Switching between the [2π+2σ] and Hetero-[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles.
Ji-Jie WangLei TangYuanjiu XiaoWen-Biao WuGuoqiang WangJian-Jun FengPublished in: Angewandte Chemie (International ed. in English) (2024)
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf) 2 , was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf) 3 -catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.