Login / Signup

Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide.

Mingmei WangTao ZhangDasha MaoYimin YaoXiangliang ZengLinlin RenQiran CaiSrikanth MatetiLu Hua LiXiao-Liang ZengGuoping DuRong SunYing Ian ChenJian-Bin XuChing Ping Wong
Published in: ACS nano (2019)
Boron nitride nanotubes (BNNTs), structural analogues of carbon nanotubes, have attracted significant attention due to their superb thermal conductivity, wide bandgap, excellent hydrogen storage capacity, and thermal and chemical stability. Despite considerable progress in the preparation and surface functionalization of BNNTs, it remains a challenge to assemble one-dimensional BNNTs into three-dimensional (3D) architectures (such as aerogels) for practical applications. Here, we report a highly compressive BNNT aerogel reinforced with reduced graphene oxide (rGO) fabricated using a freeze-drying method. The reinforcement effect of rGO and 3D honeycomb-like framework offer the BNNTs/rGO aerogel with a high compression resilience. The BNNTs/rGO aerogels were then infiltrated with polyethylene glycol to prepare a kind of phase change materials. The prepared phase change material composites show zero leakage even at 100 °C and enhanced thermal conductivity, due to the 3D porous structure of the BNNTs/rGO aerogel. This work provides a simple method for the preparation of 3D BNNTs/rGO aerogels for many potential applications, such as high-performance polymer composites.
Keyphrases
  • reduced graphene oxide
  • gold nanoparticles
  • carbon nanotubes
  • climate change
  • molecular docking
  • molecularly imprinted
  • working memory
  • risk assessment
  • mass spectrometry
  • highly efficient
  • human health