Login / Signup

No evidence for rhythmic sampling in inhibition of return.

René MichelNiko A Busch
Published in: Attention, perception & psychophysics (2023)
When exogenously cued, attention reflexively reorients towards the cued position. After a brief dwelling time, attention is released and then persistently inhibited from returning to this position for up to three seconds, a phenomenon coined 'inhibition of return' (IOR). This inhibitory interpretation has shaped our understanding of the spatio-temporal dynamics of the attentional spotlight after an exogenous visual cue for more than three decades. However, a recent theory refines this traditional view and predicts that attention rhythmically alternates between possible target locations at a theta frequency, implying occasional returns of attention to the cued position. Unfortunately, previous IOR studies have only probed performance at a few, temporally wide-spread cue-target onset asynchronies (CTOAs) rendering a comparison of these contradictory predictions impossible. We therefore used a temporally fine-grained adaptation of the Posner paradigm with 25 equally and densely spaced CTOAs, which yielded a robust IOR effect in the reaction time difference between valid and invalidly cued trials. We modelled the time course of this effect across CTOAs as a linear or exponential decay (traditional IOR model), sinusoidal rhythm (rhythmic model) and a combination of both (hybrid model). Model comparison by means of goodness-of-fit indices provided strong evidence in favor of traditional IOR models, and against theta-rhythmic attentional sampling contributing to IOR. This finding was supported by an FFT analysis, which also revealed no significant theta rhythm. We therefore conclude that the spatio-temporal dynamics of attention following an exogenous cue cannot be explained by rhythmic attentional sampling.
Keyphrases
  • working memory
  • atrial fibrillation
  • transcranial magnetic stimulation
  • heart rate
  • molecular dynamics
  • electron transfer