Uncovering the Underlying Mechanisms Governing the Solidlike Layering of Ionic Liquids (ILs) on Mica.
Yali WangLei LiPublished in: Langmuir : the ACS journal of surfaces and colloids (2020)
Significant progress has been made in understanding the IL-solid interface in the past three decades, and a key finding is that ILs can form solidlike layers at the interface. It has been recognized that the electrostatic forces at the solid-IL interface and self-assembly of ILs are key enablers of the IL layering. However, regarding the layering structure of ILs, research from different laboratories is not consistent; i.e., the number of solidlike layers could range from 0 to ∼60, indicating the complexity of the underlying mechanisms and/or the existence of overlooked key parameters. In the current review, we will discuss the underlying mechanisms and key parameters governing the layering of ILs on mica, the most studied model solid. First, we will present the experimental findings from various laboratories, both consistent and contradictory ones, and summarize the current understanding of the governing mechanisms. Then, we will discuss the possible key parameters, including the structure of ILs, surface modification and contamination of mica, and cosolvent impacting the solidlike layering of ILs. Finally, we will discuss future research directions in uncovering the underlying mechanisms.