The impact of acute bouts of interval and continuous walking on energy-intake and appetite regulation in subjects with type 2 diabetes.
Ida A MüllerAnne-Sophie Wedell-NeergaardThomas P J SolomonKristian KarstoftPublished in: Physiological reports (2018)
In healthy subjects, it has been suggested that exercise may acutely suppress energy-intake and appetite, with peak intensity being an important determinant for this effect. In subjects with type 2 diabetes (T2D), the effect of exercise on appetite-related variables is, however, virtually unknown. We aimed to assess the effects of two exercise interventions, differing with regards to peak intensity, on energy-intake, satiety and appetite-related hormones in subjects with T2D. Thirteen subjects with T2D completed three 60-min interventions with continuous measurement of oxygen consumption in a randomized and counterbalanced order: (1) Control, (2) Continuous walking (CW; intended 73% of VO2peak), (3) Interval-walking (IW; repeated cycles of 3 min slow [54% of VO2peak] and 3 min fast walking [89% of VO2peak]). Forty-five minutes after completion of the intervention, a 3-h liquid mixed meal tolerance test (MMTT, 450 kcal) with regular satiety assessments and blood samples for appetite-related hormones commenced. An ad libitum meal was served after the MMTT, with subsequent calculation of energy-intake. Moreover, free-living diet records were completed for the following ~32 h. Exercise interventions were well-matched for mean oxygen consumption (CW = 77 ± 2% of VO2peak; IW = 76 ± 1% of VO2peak, P > 0.05). No differences in appetite-related hormones or energy-intake were found (P > 0.05 for all comparisons). IW increased fullness compared to Control shortly after the intervention (P < 0.05) and tended to reduce hunger 2 h into the MMTT compared to CW and Control (P < 0.10). In conclusion, a single exercise session does not affect energy-intake during the following ~4-36 h in subjects with T2D. However, satiety may be affected up to ~3 h after the exercise session, dependent on peak intensity.