Login / Signup

The oxidation-resistant CaMKII-MM281/282VV mutation does not prevent arrhythmias in CPVT1.

Mani SadrediniRavinea ManotheepanStephan E LehnartMark E AndersonIvar SjaastadMathis Korseberg Stokke
Published in: Physiological reports (2022)
Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited arrhythmogenic disorder caused by missense mutations in the cardiac ryanodine receptors (RyR2), that result in increased β-adrenoceptor stimulation-induced diastolic Ca 2+ leak. We have previously shown that exercise training prevents arrhythmias in CPVT1, potentially by reducing the oxidation of Ca 2+ /calmodulin-dependent protein kinase type II (CaMKII). Therefore, we tested whether an oxidation-resistant form of CaMKII protects mice carrying the CPVT1-causative mutation RyR2-R2474S (RyR2-RS) against arrhythmias. Antioxidant treatment (N-acetyl-L-cysteine) reduced the frequency of β-adrenoceptor stimulation-induced arrhythmogenic Ca 2+ waves in isolated cardiomyocytes from RyR2-RS mice. To test whether the prevention of CaMKII oxidation exerts an antiarrhythmic effect, mice expressing the oxidation-resistant CaMKII-MM281/282VV variant (MMVV) were crossed with RyR2-RS mice to create a double transgenic model (RyR2-RS/MMVV). Wild-type mice served as controls. Telemetric ECG surveillance revealed an increased incidence of ventricular tachycardia and an increased arrhythmia score in both RyR2-RS and RyR2-RS/MMVV compared to wild-type mice, both following a β-adrenoceptor challenge (isoprenaline i.p.), and following treadmill exercise combined with a β-adrenoceptor challenge. There were no differences in the incidence of arrhythmias between RyR2-RS and RyR2-RS/MMVV mice. Furthermore, no differences were observed in β-adrenoceptor stimulation-induced Ca 2+ waves in RyR2-RS/MMVV compared to RyR2-RS. In conclusion, antioxidant treatment reduces β-adrenoceptor stimulation-induced Ca 2+ waves in RyR2-RS cardiomyocytes. However, oxidation-resistant CaMKII-MM281/282VV does not protect RyR2-RS mice from β-adrenoceptor stimulation-induced Ca 2+ waves or arrhythmias. Hence, alternative oxidation-sensitive targets need to be considered to explain the beneficial effect of antioxidant treatment on Ca 2+ waves in cardiomyocytes from RyR2-RS mice.
Keyphrases