Login / Signup

Single-cell transcriptomic profiling of human pancreatic islets reveals genes responsive to glucose exposure over 24 h.

Caleb M GrenkoHenry J TaylorLori L BonnycastleDongxiang XueBrian N LeeZoe WeissTingfen YanAmy J SwiftErin C MansellAngela LeeCatherine C RobertsonNarisu NarisuMichael R ErdosShuibing ChenFrancis S CollinsD Leland Taylor
Published in: Diabetologia (2024)
The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .
Keyphrases
  • single cell
  • genome wide
  • blood glucose
  • type diabetes
  • copy number
  • gene expression
  • dendritic cells
  • dna methylation
  • high throughput
  • artificial intelligence
  • skeletal muscle
  • genome wide identification
  • glycemic control