Lack of Cell Proliferative and Tumorigenic Effects of 4-Hydroxyestradiol in the Anterior Pituitary of Rats: Role of Ultrarapid O-Methylation Catalyzed by Pituitary Membrane-Bound Catechol-O-Methyltransferase.
Pan WangLaura H MillsJi-Hoon SongJina YuBao Ting ZhuPublished in: Chemical research in toxicology (2017)
In animal models, estrogens are complete carcinogens in certain target sites. 4-Hydroxyestradiol (4-OH-E2), an endogenous metabolite of 17β-estradiol (E2), is known to have prominent estrogenic activity plus potential genotoxicity and mutagenicity. We report here our finding that 4-OH-E2 does not induce pituitary tumors in ACI female rats, whereas E2 produces 100% pituitary tumor incidence. To probe the mechanism, we conducted a short-term animal experiment to compare the proliferative effect of 4-OH-E2 in several organs. We found that, whereas 4-OH-E2 had little ability to stimulate pituitary cell proliferation in ovariectomized female rats, it strongly stimulates cell proliferation in certain brain regions of these animals. Further, when we used in vitro cultured rat pituitary tumor cells as models, we found that 4-OH-E2 has similar efficacy as E2 in stimulating cell proliferation, but its potency is approximately 3 orders of magnitude lower than that of E2. Moreover, we found that the pituitary tumor cells have the ability to selectively metabolize 4-OH-E2 (but not E2) with ultrahigh efficiency. Additional analysis revealed that the rat pituitary expresses a membrane-bound catechol-O-methyltransferase that has an ultralow Km value (in nM range) for catechol estrogens. On the basis of these observations, it is concluded that rapid metabolic disposition of 4-OH-E2 through enzymatic O-methylation in rat anterior pituitary cells largely contributes to its apparent lack of cell proliferative and tumorigenic effects in this target site.
Keyphrases
- cell proliferation
- growth hormone
- single cell
- oxidative stress
- dna methylation
- photodynamic therapy
- magnetic resonance imaging
- cell therapy
- genome wide
- induced apoptosis
- risk factors
- risk assessment
- stem cells
- quantum dots
- gene expression
- magnetic resonance
- hydrogen peroxide
- signaling pathway
- blood brain barrier
- room temperature
- ionic liquid
- cell cycle arrest