Login / Signup

Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae .

Rodrigo Santos-PascualIván CampoyDavid Sanz MataMaría Jesús MartínezAlicia PrietoJorge Barriuso
Published in: Microbiology spectrum (2023)
Quorum sensing (QS) is a complex cell-cell communication mechanism that coordinates population-level behaviors in microbes. In eukaryotes, this phenomenon has been extensively described in the dimorphic yeast Candida albicans as its main QS molecule, the sesquiterpene alcohol farnesol, is responsible for various phenotypic (i.e., inhibition of yeast-to-hyphae transition, biofilm formation, and, hence, pathogenesis) and metabolic (i.e., induction of oxidative stress and apoptosis) changes. Ophiostoma piceae CECT 20416 is a dimorphic saprotrophic ascomycete with biotechnological interest that also produces farnesol as QS molecule, but in this case, the alcohol promotes the morphological transition to the mycelial form, biofilm formation, enzyme secretion, and melanin production. Here, we characterized the physiological response of Ophiostoma piceae to farnesol, the molecular components of the QS system of this fungus have been investigated using a "multiomics" approach that involved genomic, transcriptomic, and proteomic analyses. Some genes identified in this work are proposed as key factors in farnesol transport and signaling. We have also cataloged the genes undergoing major transcriptional changes triggered by the presence of the autoinducer, such as cell-wall remodeling, reactive oxygen species (ROS) protection, and melanin biosynthesis, using self-organizing maps. This analysis could be useful for applications in the forestry industry, for enzymes production, and for the valorization of residues. Furthermore, it might as well help to investigate the QS mechanisms of clinically relevant fungi phylogenetically related to Ophiostoma . IMPORTANCE This manuscript presents a comprehensive study on the molecular mechanisms triggered by the quorum sensing (QS) molecule farnesol in the biotechnologically relevant fungus Ophiostoma piceae . We present for the first time, using a multiomics approach, an in-depth analysis of the QS response in a saprotroph fungus, detailing the molecular components involved in the response and their possible mechanisms of action. We think that these results are particularly relevant in the knowledge of the functioning of the QS in eukaryotes, as well as for the exploitation of these mechanisms.
Keyphrases