Colloidal Quasi-2D Methylammonium Lead Bromide Perovskite Nanostructures with Tunable Shape and High Chemical Stability.
Eugen KleinRostyslav LesyukChristian KlinkePublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Control over the lateral dimensions of colloidal nanostructures is a complex task which requires a deep understanding of the formation mechanism and reactivity in the corresponding systems. As a result, it provides a well-founded insight to the physical and chemical properties of these materials. In this work, the preparation of quasi-2D methylammonium lead bromide nanostripes and discuss the influence of some specific parameters on the morphology and stability of this material is demonstrated. The variation in the amount of the main ligand dodecylamine gives a large range of structures beginning with 3D brick-like particles at low concentrations, nanostripes at elevated and ultimately nanosheets at large concentrations. The amount of the co-ligand trioctylphosphine can alter the width of the nanostripe shape to a certain degree. The thickness can be adjusted by the amount of the second precursor methylammonium bromide. Additionally, insights are given for the suggested formation mechanism of these anisotropic structures as well as for stability against moisture at ambient conditions in comparison with differently synthesized nanosheet samples.