Login / Signup

A guide to genetically encoded tools for the study of H2 O2.

Daria D SmolyarovaOleg V PodgornyDmitry S BilanVsevolod V Belousov
Published in: The FEBS journal (2021)
Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2 O2 is known to impact various targets in the cell; therefore, the question of how H2 O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2 O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2 O2 -sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2 O2 generation.
Keyphrases
  • reactive oxygen species
  • hydrogen peroxide
  • single cell
  • dna damage
  • cell death
  • transcription factor
  • genome wide
  • mesenchymal stem cells
  • bone marrow
  • gene expression
  • copy number