Login / Signup

Quantum Chemical Analysis of the Corrosion Inhibition Potential by Aliphatic Amines.

Szymon MalinowskiMichał WróbelAgnieszka Woszuk
Published in: Materials (Basel, Switzerland) (2021)
Destructive corrosion processes lead to the loss of primary mechanical properties of metal construction materials, which generates additional costs during their maintenance connected with repairs and protection. The effectiveness of corrosion inhibitors can be determined by using many methods, in particular quantum chemical modeling. The subject of the theoretical analyses presented in this work involves the anticorrosion properties of amines with various chemical structures. Evaluation of the corrosion inhibition properties of selected amines was performed on the basis of the HOMO-LUMO energy gap, dipole moment (µ), electronegativity (χ) determined as a result of the energy of the highest occupied molecular orbital (HOMO) and the energy of the lowest unoccupied molecular orbital (LUMO). Moreover, the HSAB (Hard and Soft Acids and Bases) theory was used to explain the reactivity of the analyzed amines, while the Mulliken population analysis was used to determine their electrostatic interactions with the surface of protected metal. The obtained results indicate that the protonation reaction of aliphatic amines leads to a change in the nature of the formation of a coordination bond with the surface of the protected metal. In turn, the quantum chemical calculations showed that the protonation reaction of aliphatic amines leads to a decrease in their corrosion inhibition efficiency. Most of the analyzed parameters indicated that tertiary amines are characterized by the highest corrosion inhibition efficiency.
Keyphrases
  • molecular dynamics
  • systematic review
  • molecular dynamics simulations
  • climate change
  • risk assessment
  • sensitive detection
  • human health
  • data analysis