Login / Signup

Fluorescent "Turn off-on" Small-Molecule-Monitoring Nanoplatform Based on Dendrimer-like Peptides as Competitors.

He ChenYuan DingQian YangBogdan BarnychGualberto Gonzalez-SapienzaBruce D HammockMinghua WangXiude Hua
Published in: ACS applied materials & interfaces (2019)
Peptides isolated from phage display libraries are powerful reagents for small-molecule immunoassay; however, their application as phage-borne peptides is significantly limited by the biological nature of the phage. Here, we present the use of lysine scaffold to prepare a series of different valence peptides to serve as replacements for phage-borne peptides. Benzothiostrobin was selected as a model analyte, the cyclic benzothiostrobin-peptidomimetic in the form of monomer, dendrimer-like dimer, and tetramer were designed and synthesized. Compared with the monomer, the affinity of dendrimer-like dimer and tetramer increased 1.87 and 13.6 times, respectively, as determined by isothermal titration calorimetry (ITC). A novel inner filter effect immunoassay (IFE-IA) with positive readout was developed for benzothiostrobin detection utilizing the peptidomimetics attached to upconversion nanoparticles (UCNPs) as energy donor and monoclonal antibody (mAb)-labeled urchin-like gold nanoflowers (AuNFs) as energy absorber, respectively. The sensitivity of the assay based on dendrimer-like tetramer was approximately 6 and 3 times higher than monomer and dendrimer-like dimer, respectively. After optimization, 50% saturation of the signal (SC50) and detection range (SC10 to SC90) of the IFE-IA based on dendrimer-like tetramer were 11.81 ng mL-1 and 2.04-106.17 ng mL-1, respectively. The IFE-IA also shows good accuracy for the detection of benzothiostrobin in authentic samples.
Keyphrases