Login / Signup

Patterns of change in nucleotide diversity over gene length.

Farhan Ali
Published in: bioRxiv : the preprint server for biology (2023)
Nucleotide diversity at a site is influenced by the relative strengths of neutral and selective population genetic processes. Therefore, attempts to identify sites under positive selection require an understanding of the expected diversity in its absence. The nucleotide diversity of a gene was previously found to correlate with its length. In this work, I measure nucleotide diversity at synonymous sites and uncover a pattern of low diversity towards the translation initiation site (TIS) of a gene. The degree of reduction in diversity at the TIS and the length of this region of reduced diversity can be quantified as "Effect Size" and "Effect Length" respectively, using parameters of an asymptotic regression model. Estimates of Effect Length across bacteria covaried with recombination rates as well as with a multitude of fast-growth adaptations such as the avoidance of mRNA secondary structure around TIS, the number of rRNAs, and relative codon usage of ribosomal genes. Thus, the dependence of nucleotide diversity on gene length is governed by a combination of selective and non-selective processes. These results have implications for the estimation of effective population size and relative mutation rates based on "silent-site" diversity, and for pN/pS-based prediction of genes under selection.
Keyphrases
  • genome wide
  • copy number
  • genome wide identification
  • dna damage
  • oxidative stress
  • transcription factor