Repeated Wingate sprints is a feasible high-quality training strategy in moderate hypoxia.
Andreas Breenfeldt AndersenJacob BejderThomas BonneNiels Vidiendal OlsenNikolai NordsborgPublished in: PloS one (2020)
Sprint-interval training (SIT) is efficient at improving maximal aerobic capacity and anaerobic fitness at sea-level and may be a feasible training strategy at altitude. Here, it was evaluated if SIT intensity can be maintained in mild to moderate hypoxia. It was hypothesized that 6 x 30 s Wingate sprint performance with 2 min active rest between sprints can be performed in hypoxic conditions corresponding to ~3,000 m of altitude without reducing mean power output (MPO). In a single-blinded, randomized crossover design, ten highly-trained male endurance athletes with a maximal oxygen uptake ([Formula: see text]O2max) of 68 ± 5 mL O2 × min-1 × kg-1 completed 6 x 30 s all-out Wingate cycling sprints separated by two-minute active recovery on four separate days in a hypobaric chamber. The ambient pressure within the chamber on each experimental day was 772 mmHg (~0 m), 679 mmHg (~915 m), 585 mmHg (~ 2,150 m), and 522 mmHg (~3,050 m), respectively. MPO was not different at sea-level and up to ~2,150 m (~1% and ~3% non-significant decrements at ~915 and ~2,150 m, respectively), whereas MPO was ~5% lower (P<0.05) at ~3,050 m. Temporal differences between altitudes was not different for peak power output (PPO), despite a main effect of altitude. In conclusion, repeated Wingate exercise can be completed by highly-trained athletes at altitudes up to ~2,150 m without compromising MPO or PPO. In contrast, MPO was compromised in hypobaric hypoxia corresponding to ~3,050 m. Thus, SIT may be an efficient strategy for athletes sojourning to moderate altitude and aiming to maintain training quality.
Keyphrases
- high intensity
- resistance training
- body composition
- virtual reality
- placebo controlled
- endothelial cells
- open label
- double blind
- physical activity
- air pollution
- microbial community
- computed tomography
- wastewater treatment
- magnetic resonance imaging
- particulate matter
- human milk
- phase iii
- heart rate
- smoking cessation
- blood pressure