Login / Signup

Stiffness-Changing of Polymer Nanocomposites with Cellulose Nanocrystals and Polymeric Dispersant.

Worarin MeesornJustin O ZoppeChristoph Weder
Published in: Macromolecular rapid communications (2019)
Bio-inspired, water-responsive, mechanically adaptive nanocomposites are reported based on cellulose nanocrystals (CNCs), poly(ethylene oxide-co-epichlorohydrin) (EO-EPI), and a small amount of poly(vinyl alcohol) (PVA), which is added to aid the dispersion of the CNCs. In the dry state, the CNCs form a reinforcing network within the polymer matrix, and the substantial stiffness increase relative to the neat polymer is thought to be the result of hydrogen-bonding interactions between the nanocrystals. Exposure to water, however, causes a large stiffness reduction, due to competitive hydrogen bonding of water molecules and the CNCs. It is shown here that the addition of PVA to the EO-EPI/CNC nanocomposite increases the modulus difference between the dry and the wet state by a factor of up to four compared to the nanocomposites without the PVA. The main reason is that the PVA leads to a substantial increase of the stiffness in the dry state; for example, the storage modulus E ' increased from 2.7 MPa (neat EO-EPI) to 50 MPa upon introduction of 10% CNCs, and to 200 MPa when additionally 5% of PVA was added. By contrast, the incorporation of PVA only led to moderate increases of the equilibrium water swelling and the E ' in the wet state.
Keyphrases