In Situ Construction of Near-Infrared Response Hybrid Up-Conversion Photocatalyst for Degrading Organic Dyes and Antibiotics.
Lianqing YuYankun WangXinhai SuChong LiuKehui XueHuihua LuoYaping ZhangHaifeng ZhuPublished in: Molecules (Basel, Switzerland) (2023)
Unique nonlinear optical properties for converting low-energy incident light into high-energy radiation enable up-conversion materials to be employed in photocatalytic systems. An efficient near-infrared (NIR) response photocatalyst was successfully fabricated through a facile two-step method to load BiOBr on the Nd 3+ , Er 3+ @NaYF 4 (NE@NYF) up-conversion material. The NE@NYF can transform NIR into visible and UV light and promote charge-energy transfer in the semiconductor. Consequently, the as-obtained photocatalysts exhibit excellent photodegradation performance for rhodamine B dye (RhB) and tetracycline (TC) organic pollutants. About 98.9% of the RhB was decomposed within 60 min with the 20% NE@NYF-B sample, outperforming the pristine BiOBr (61.9%). In addition, the 20% NE@NYF-B composite could decompose approximately 72.7% of the organic carbon during a 10 h reaction, which was almost two-fold more than that of BiOBr. Meanwhile, a possible charge transfer mechanism is proposed based on the recombination of electron-hole pairs and reactive oxygen species. This work provides a rational hybrid structure photocatalyst for improving photocatalytic performance in the broadband spectrum and provides a new strategy for NIR light utilization.
Keyphrases
- visible light
- fluorescent probe
- energy transfer
- photodynamic therapy
- reactive oxygen species
- drug release
- fluorescence imaging
- solar cells
- cardiovascular disease
- quantum dots
- dna damage
- type diabetes
- drug delivery
- aqueous solution
- breast cancer cells
- radiation therapy
- radiation induced
- estrogen receptor
- high resolution