Simple models highlight differences in the walking biomechanics of young children and adults.
Vivian L RoseChristopher J ArellanoPublished in: The Journal of experimental biology (2021)
Adults conserve metabolic energy during walking by minimizing the step-to-step transition work performed by the legs during double support and by utilizing spring-like mechanisms in their legs, but little is known as to whether children utilize these same mechanisms. To gain a better understanding, we studied how children (5-6 years) and adults modulate the mechanical and metabolic demands of walking at their preferred speed, across slow (75%), preferred (100%) and fast (125%) step frequencies. We quantified (1) the positive mass-specific work done by the trailing leg during step-to-step transitions and (2) the leg's spring-like behavior during single support. On average, children walked with a 36% greater net cost of transport (COT; J kg-1 m-1) than adults (P=0.03), yet both groups increased their net COT at varying step frequencies. After scaling for speed, children generated ∼2-fold less trailing limb positive scaled mechanical work during the step-to-step transition (P=0.02). Unlike adults, children did not modulate their trailing limb positive work to meet the demands of walking at 75% and 125% of their preferred step frequency. In single support, young children operated their stance limb with much greater compliance than adults ( versus 11.35; P=0.023). Our observations suggest that the mechanics of walking in children aged 5-6 years are fundamentally distinct from the mechanics of walking in adults and may help to explain a child's higher net COT. These insights have implications for the design of assistive devices for children and suggest that children cannot be simply treated as scaled-down versions of adults.
Keyphrases