Login / Signup

Challenges in the Highly Selective [3 + 1]-Cycloaddition of an Enoldiazoacetamide to Form a Donor-Acceptor Cis-Cyclobutenecarboxamide.

Sipak JoyasawalDonghui MaMichael P Doyle
Published in: Molecules (Basel, Switzerland) (2021)
A substituted donor-acceptor cyclobutenecarboxamide is synthesized with modest enantiocontrol through a chiral copper(I) complex catalyzed [3 + 1]-cycloaddition reaction of α-acyl diphenylsulfur ylides with 3-siloxy-2-diazo-3-butenamides. With a methyl substituent on the 4-position of the 3-butenamide, the cis-vicinal-3,4-disubstituted cyclobutenecarboxamide is formed with >20:1 diastereocontrol. Donor-acceptor 3-methyl-2-siloxycyclopropenecarboxamide is rapidly formed from the reactant enoldiazoamide and undergoes catalytic ring opening to give only the Z-γ-substituted metallo-enolcarbene. Elimination from 3-siloxy-2-diazo-3-pentenamide to form the conjugated 3-siloxy-2,4-pentadienamide is competitive but minimized at low temperature.
Keyphrases
  • solar cells
  • molecular docking
  • energy transfer
  • photodynamic therapy
  • ionic liquid
  • oxide nanoparticles
  • gram negative
  • mass spectrometry