Login / Signup

Lagrangian-Based Minimal-Overhead Batching Scheme for the Efficient Integral-Direct Evaluation of the RPA Correlation Energy.

Viktoria DrontschenkoDaniel GrafHenryk LaquaChristian Ochsenfeld
Published in: Journal of chemical theory and computation (2021)
A highly memory-efficient integral-direct random phase approximation (RPA) method based on our ω-CDGD-RI-RPA method [Graf, D. J. Chem. Theory Comput. 2018, 14, 2505] is presented that completely alleviates the memory bottleneck of storing the multidimensional three-center integral tensor, which severely limited the tractable system sizes. Based on a Lagrangian formulation, we introduce an optimized batching scheme over the auxiliary and basis-function indices, which allows to compute the optimal number of batches for a given amount of system memory, while minimizing the batching overhead. Thus, our optimized batching constitutes the best tradeoff between program runtime and memory demand. Within this batching scheme, the half-transformed three-center integral tensor BiμM is recomputed for each batch of auxiliary and basis functions. This allows the computation of systems that were out of reach before. The largest system within this work consists of a DNA fragment comprising 1052 atoms and 11 230 basis functions calculated on a single node, which emphasizes the new possibilities of our integral-direct RPA method.
Keyphrases
  • working memory
  • lymph node
  • drug delivery
  • quality improvement