Login / Signup

Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters.

Li YaoGuangda NiuJun-Ze LiLiang GaoXufeng LuoBing XiaYuhao LiuPeipei DuDe-Hui LiChao ChenYou-Xuan ZhengZewen XiaoJiang Tang
Published in: The journal of physical chemistry letters (2020)
Circularly polarized luminescent (CPL) materials are promising in applications such as 3D displays and quantum communication. Hybrid organic-inorganic copper(I) iodides have been rapidly developed due to their intense photoluminescence and structural diversity; nevertheless, the reported Cu-I clusters rarely show CPL activities. In this study, we introduced chiral organic molecules R/S-methylbenzylammonium (R/S-MBA) into Cu-I inorganic skeletons to achieve chiral tetranuclear (R/S-MBA)4Cu4I4 clusters with intense orange luminescence and CPL activity at room temperature. These enantiomeric (R/S-MBA)4Cu4I4 clusters show oppositely signed circular dichroism (CD) signals, which agree well with their simulated electronic CD spectra. The crystallization-induced helical arrangement of (R/S-MBA)4Cu4I4 clusters and their largely distorted polynuclear configuration demonstrate a new platform for the study of chiral-related properties.
Keyphrases