Login / Signup

Oxygen Defect Engineering of β-MnO2 Catalysts via Phase Transformation for Selective Catalytic Reduction of NO.

Runnong YangShaomin PengBang LanMing SunZihao ZhouChangyong SunZihan GaoGuichuang XingLin Yu
Published in: Small (Weinheim an der Bergstrasse, Germany) (2021)
The catalysts for low-temperature selective catalytic reduction of NO with NH3 (NH3 -SCR) are highly desired due to the large demand in industrial furnaces. The characteristic of low-temperature requires the catalyst with rich active sites especially the redox sites. Herein, the authors obtain oxygen defect-rich β-MnO2 from a crystal phase transformation process during air calcination, by which the as-prepared γ-MnO2 nanosheet and nanorod can be conformally transformed into the corresponding β-MnO2 . Simultaneously, this transformation accompanies oxygen defects modulation resulted from lattice rearrangement. The most active β-MnO2 nanosheet with plentiful oxygen defects shows a high efficiency of > 90% NO conversion in an extremely wide operation window of ≈120-350 °C. The detailed characterizations and density functional theory (DFT) calculations reveal that the introduction of oxygen defects enhances the adsorption properties for reactants and decreases the energy barriers of *NH2 formation more than 0.3 eV (≈0.32-0.37 eV), which contributes to a high efficiency of low-temperature SCR activity. The authors finding provides a feasible approach to achieve the oxygen defect engineering and gains insight into manganese-based catalysts for low-temperature NO removal or pre-oxidation.
Keyphrases