Login / Signup

Photoprotective compounds and radioresistance in pigmented and non-pigmented yeasts.

Marianne Gabi KreuschRubens Tadeu Delgado Duarte
Published in: Applied microbiology and biotechnology (2021)
Ultraviolet radiation, continuously reaching our planet's surface, is a type of electromagnetic energy within the wavelength range of 10 to 400 nm. Despite essential for all life on Earth, ultraviolet radiation may have severe adverse cellular effects, including DNA dimerization and production of reactive oxygen species. Radioresistant microorganisms can survive under high doses of ultraviolet radiation, enduring the direct and indirect effects on nucleic acids and other biomolecules. The synthesis and accumulation of photoprotective compounds are among the main strategies employed by radioresistant yeast species to bear the harmful effects of ultraviolet radiation. A correlation between pigments and resistance to ultraviolet radiation has been widely recognized in these microorganisms; however, there is still some debate on this topic, with non-pigmented strains sometimes being more resistant than their pigmented counterparts. In this review, we explore the role of photoprotective compounds-specifically, melanin, carotenoids, and mycosporines-and compare the differences found in resistance between pigmented and non-pigmented yeasts. We also discuss the biotechnological potential of these photoprotective compounds, with special emphasis on those produced by non-pigmented yeast strains, such as phytoene and phytofluene. The use of "-omics" approaches should further unveil the radioresistance mechanisms of non-pigmented yeasts, opening new opportunities for both research and commercial applications. KEY POINTS: • Updated knowledge on photoprotective compounds from radioresistant yeasts. • Differences on radioresistance between pigmented and non-pigmented yeasts. • Future prospects over the study of non-pigmented photoprotective compounds.
Keyphrases
  • basal cell carcinoma
  • saccharomyces cerevisiae
  • reactive oxygen species
  • healthcare
  • escherichia coli
  • emergency department
  • risk assessment
  • radiation therapy
  • early onset
  • drug induced