Predicting Inhibition of CDK2 with SAnDReS: The Application of Machine Learning to Navigate the Scoring Function Space.
Walter Filgueira de AzevedoPublished in: Current medicinal chemistry (2024)
CDK2 plays a pivotal role in controlling the progression of the cell cycle and is a target for anticancer drugs. The last 30 years of structural studies focused on CDK2 provided the basis for understanding its inhibition and furnished the data to develop machine-learning models to study intermolecular interactions. This review addresses the application of computational models to estimate the inhibition of CDK2. It focuses on machine-learning models developed to predict binding affinity against CDK2 using the program SAnDReS. A search of previously published articles on PubMed showed machine-learning models built to evaluate CDK2 inhibition. BindingDB information for CDK2 furnished the data to generate updated machine-learning models to predict the inhibition of this enzyme. The application of SAnDReS to model CDK2-inhibitor interactions showed that this approach can build machine-learning models with superior predictive performance compared with classical and deep-learning scoring functions. Also, the innovative DOME analysis of the predictive performance of machine learning and universal scoring function indicates that this method is adequate to select computational models to address protein-ligand interactions. The available structural and functional data about CDK2 is a rich source of information to build machine-learning models to predict the inhibition of this protein target. SAnDReS can build superior models to predict pKi and outperform universal scoring functions, including one developed using deep learning.