Login / Signup

Fabrication of Micropatterned Dipeptide Hydrogels by Acoustic Trapping of Stimulus-Responsive Coacervate Droplets.

Madeleine K NicholsRavinash Krishna KumarPhilip G BassindaleLiangfei TianAdrian C BarnesBruce W DrinkwaterAvinash J PatilStephen Mann
Published in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Acoustic standing waves offer an excellent opportunity to trap and spatially manipulate colloidal objects. This noncontact technique is used for the in situ formation and patterning in aqueous solution of 1D or 2D arrays of pH-responsive coacervate microdroplets comprising poly(diallyldimethylammonium) chloride and the dipeptide N-fluorenyl-9-methoxy-carbonyl-D-alanine-D-alanine. Decreasing the pH of the preformed droplet arrays results in dipeptide nanofilament self-assembly and subsequent formation of a micropatterned supramolecular hydrogel that can be removed as a self-supporting monolith. Guest molecules such as molecular dyes, proteins, and oligonucleotides are sequestered specifically within the coacervate droplets during acoustic processing to produce micropatterned hydrogels containing spatially organized functional components. Using this strategy, the site-specific isolation of multiple enzymes to drive a catalytic cascade within the micropatterned hydrogel films is exploited.
Keyphrases
  • tissue engineering
  • aqueous solution
  • drug delivery
  • hyaluronic acid
  • wound healing
  • cancer therapy
  • drug release
  • extracellular matrix
  • single cell
  • high throughput
  • water soluble
  • room temperature
  • crystal structure