Login / Signup

Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells.

Virginia CuestaManish Kumar SinghEdgar Gutiérrez-FernándezJaime MartinRocío DomínguezPilar de la CruzGanesh D SharmaFernando Langa
Published in: ACS applied materials & interfaces (2022)
The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited, which hinders the discovery of new, high-performing donor:acceptor combinations. Here, we present a new, efficient electron-accepting compound based on a hitherto unexplored family of well-known molecules: gold porphyrins. The electronic properties of our electron-accepting gold porphyrin, named VC10 , were studied by UV-Vis spectroscopy and by cyclic voltammetry (CV) , revealing two intense optical absorption bands at 500-600 and 700-920 nm and an optical bandgap of 1.39 eV. Blending VC10 with PTB7-Th, a donor polymer, which gives rise to an absorption band at 550-780 nm complementary to that of VC10 , enables the fabrication of organic solar cells (OSCs) featuring a power conversion efficiency of 9.24% and an energy loss of 0.52 eV. Hence, this work establishes a new approach in the search for efficient acceptor molecules for solar cells and new guidelines for future photovoltaic material design.
Keyphrases