Login / Signup

Biologically Controlled Morphology and Twinning in Guanine Crystals.

Anna HirschBenjamin A PalmerNadav EladDvir GurSteve WeinerLia AddadiLeeor KronikLeslie Leiserowitz
Published in: Angewandte Chemie (International ed. in English) (2017)
Guanine crystals are widely used in nature as components of multilayer reflectors. Guanine-based reflective systems found in the copepod cuticle and in the mirror of the scallop eye are unique in that the multilayered reflectors are tiled to form a contiguous packed array. In the copepod cuticle, hexagonal crystals are closely packed to produce brilliant colors. In the scallop eye, square crystals are tiled to obtain an image-forming reflecting mirror. The tiles are about 1 μm in size and 70 nm thick. According to analysis of their electron diffraction patterns, the hexagon and square tiles are not single crystals. Rather, each tile type is a composite of what appears to be three crystalline domains differently oriented and stacked onto one another, achieved through a twice-repeated twinning about their ⟨011⟩ and ⟨021⟩ crystal axes, respectively. By these means, the monoclinic guanine crystal mimics higher symmetry hexagonal and tetragonal structures to achieve unique morphologies.
Keyphrases
  • room temperature
  • high resolution
  • photodynamic therapy
  • deep learning
  • machine learning
  • mass spectrometry
  • solid state