Login / Signup

Optically Programmable Circularly Polarized Photodetector.

Can ZhangChenyin XuCuifen ChenJunjie ChengHongli ZhangFan NiXiaohong WangGang ZouLong-Zhen Qiu
Published in: ACS nano (2022)
The detection of circularly polarized light (CPL) has aroused wide attention from both the scientific and industrial communities. However, from the optical activity of the chiral layer in the conventional CPL photodetectors, the sign inversion property is difficult to be achieved. As a result, great challenges arise during the preparation of miniaturized and integrated devices for tunable CPL detection applications. Along these lines, in this work, by taking advantage of the CPL-induced chirality characteristics of the achiral poly(9,9-di- n -hexylfluorene- alt -benzothiadiazole) (F6BT) and the good crystalline and electrical properties of the poly(3-hexylthiophene) (P3HT) film, an optically programmable CPL photodetector was fabricated. Interestingly, the device exhibited excellent discrimination between left- and right-handed CPL, while the maximum anisotropy factor of responsivity was 0.425. On top of that, the rigorously controlled chirality of the F6BT and the capability to be switched by the handedness of CPL was leveraged to realize the switchable detection of both L-CPL and R-CPL. Furthermore, a CPL photodetector array was fabricated, and the image processing and cryptographic characteristics were demonstrated. The proposed device configuration can find application in various scientific fields, including photonics, emission, conversion, or sensing with CPL but also is anticipated to play a key role for imaging and anticounterfeiting applications.
Keyphrases