Noncovalent Stabilization of Vesicular Polyion Complexes with Chemically Modified/Single-Stranded Oligonucleotides and PEG-b-guanidinylated Polypeptides for Intracavity Encapsulation of Effector Enzymes Aimed at Cooperative Gene Knockdown.
Beob Soo KimMitsuru NaitoHiroyuki ChayaMao HoriKotaro HayashiHyun Su MinYu YiHyun Jin KimTetsuya NagataYasutaka AnrakuAkihiro KishimuraKazunori KataokaKanjiro MiyataPublished in: Biomacromolecules (2020)
For the simultaneous delivery of antisense oligonucleotides and their effector enzymes into cells, nanosized vesicular polyion complexes (PICs) were fabricated from oppositely charged polyion pairs of oligonucleotides and poly(ethylene glycol) (PEG)-b-polypeptides. First, the polyion component structures were carefully designed to facilitate a multimolecular (or secondary) association of unit PICs for noncovalent (or chemical cross-linking-free) stabilization of vesicular PICs. Chemically modified, single-stranded oligonucleotides (SSOs) dramatically stabilized the multimolecular associates under physiological conditions, compared to control SSOs without chemical modifications and duplex oligonucleotides. In addition, a high degree of guanidino groups in the polypeptide segment was also crucial for the high stability of multimolecular associates. Dynamic light scattering and transmission electron microscopy revealed the stabilized multimolecular associates to have a 100 nm sized vesicular architecture with a narrow size distribution. The loading number of SSOs per nanovesicle was determined to be ∼2500 using fluorescence correlation spectroscopic analyses with fluorescently labeled SSOs. Furthermore, the nanovesicle stably encapsulated ribonuclease H (RNase H) as an effector enzyme at ∼10 per nanovesicle through simple vortex-mixing with preformed nanovesicles. Ultimately, the RNase H-encapsulated nanovesicle efficiently delivered SSOs with RNase H into cultured cancer cells, thereby eliciting the significantly higher gene knockdown compared with empty nanovesicles (without RNase H) or a mixture of nanovesicles with RNase H without encapsulation. These results demonstrate the great potential of noncovalently stabilized nanovesicles for the codelivery of two varying bio-macromolecule payloads for ensuring their cooperative biological activity.
Keyphrases
- nucleic acid
- regulatory t cells
- electron microscopy
- dendritic cells
- drug delivery
- copy number
- genome wide
- induced apoptosis
- type iii
- binding protein
- endothelial cells
- high resolution
- cell cycle arrest
- cell death
- oxidative stress
- genome wide identification
- molecular docking
- immune response
- cell proliferation
- risk assessment
- dna methylation
- human health
- positron emission tomography