The combined effects of salinity and ammonia on the growth behavior, stress-related markers, and hepato-renal function of common carp (Cyprinus carpio).
Mahmoud A O DawoodHani SewilamPublished in: Journal of experimental zoology. Part A, Ecological and integrative physiology (2022)
One of the most critical factors affecting aquaculture efficiency is the capability of releasing ammonia from the water. By applying a high salinity strategy, this study provides a prompt approach for removing high ammonia levels and relieving its adverse impacts on common carp. The study investigated five groups with triplicates where the control was kept with fresh water, and the remaining four groups stressed with different salinity levels (5, 10, 15, and 20 ppt) for 8 weeks. Then fish were exposed to unionized ammonia (NH 3 ) stress (0.5 ppm) for 6 h. The final weight (FBW) and weight gain (WG) showed lower values in fish stressed with 15 and 20 ppt salinity levels than fish reared in 0 and 5 ppt salinity levels (p < 0.05). The lowest FBW and WG and the highest feed conversion ratio were shown in fish grown in 20 ppt (p < 0.05). The survival rate was markedly lowered by 15 and 20 ppt salinity levels (p < 0.05), while no significant differences were observed among 0, 5, and 10 ppt salinity levels (p > 0.05). Liver condition-related indices (alanine aminotransferase, aspartate aminotransferase, and alanine aminotransferase) were markedly increased in fish grown in 15 and 20 ppt before or after ammonia stress (p < 0.05). The results showed higher creatinine levels in fish raised in 15 and 20 ppt than the remaining salinity levels, with the highest value in fish of 20 ppt salinity before and after ammonia stress (p < 0.05). Markedly the blood glucose and cortisol levels were upraised in fish reared in 10, 15, and 20 ppt before and after ammonia stress (p < 0.05). The glucose level was not significantly different in fish reared in 5 ppt than 0 and 10 ppt salinity levels (p < 0.05). Generally, the blood glucose and cortisol levels were decreased markedly after ammonia stress than before ammonia stress (p < 0.05). Interestingly, total protein, albumin, and globulin levels were increased in common carp reared in different salinity levels after ammonia stress (p < 0.05). In conclusion, ammonia toxicity combined with high salinity resulted in a regulatory effect on the hepato-renal function and stress-related markers in common carp.