EDock-ML: A web server for using ensemble docking with machine learning to aid drug discovery.
Tanay ChandakChung F WongPublished in: Protein science : a publication of the Protein Society (2021)
EDock-ML is a web server that facilitates the use of ensemble docking with machine learning to help decide whether a compound is worthwhile to be considered further in a drug discovery process. Ensemble docking provides an economical way to account for receptor flexibility in molecular docking. Machine learning improves the use of the resulting docking scores to evaluate whether a compound is likely to be useful. EDock-ML takes a bottom-up approach in which machine-learning models are developed one protein at a time to improve predictions for the proteins included in its database. Because the machine-learning models are intended to be used without changing the docking and model parameters with which the models were trained, novice users can use it directly without worrying about what parameters to choose. A user simply submits a compound specified by an ID from the ZINC database (Sterling, T.; Irwin, J. J., J Chem Inf Model 2015, 55[11], 2,324-2,337.) or upload a file prepared by a chemical drawing program and receives an output helping the user decide the likelihood of the compound to be active or inactive for a drug target. EDock-ML can be accessed freely at edock-ml.umsl.edu.