Hepatic dual-contrast CT imaging: slow triple kVp switching CT with CNN-based sinogram completion and material decomposition.
Wenchao CaoNadav ShapiraAndrew Douglas Arnold MaidmentHeiner DaerrPeter B NoëlPublished in: Journal of medical imaging (Bellingham, Wash.) (2022)
Purpose: Dual-contrast protocols are a promising clinical multienergy computed tomography (CT) application for focal liver lesion detection and characterization. One avenue to enable multienergy CT is the introduction of photon-counting detectors (PCD). Although clinical translation is highly desired because of the diagnostic benefits of PCDs, it will still be a decade or more before they are broadly available. In our work, we investigated an alternative solution that can be implemented on widely used conventional CT systems (single source and integrating detector) to perform multimaterial spectral decomposition for dual-contrast imaging. Approach: We propose to slowly alternate the x-ray tube voltage between 3 kVp levels so each kVp level covers a few degrees of gantry rotation. This leads to the challenge of sparsely sampled projection data in each energy level. Performing the material decomposition (MD) in the sinogram domain is not directly possible as the projection images of the three energy levels are not angularly aligned. In order to overcome this challenge, we developed a convolutional neural network (CNN) framework for sparse sinogram completion (SC) and MD. To evaluate the feasibility of the slow kVp switching scheme, simulation studies of an abdominal phantom, which included liver lesions, were conducted. Results: The line-integral SC network yielded sinograms with a pixel-wise RMSE < 0.05 of the line-integrals compared to the ground truth. This provided acceptable image quality up to a switching angle of 9 deg per kVp. The MD network we developed allowed us to differentiate iodine and gadolinium in the sinogram domain. The average relative quantification errors for iodine and gadolinium were below 10%. Conclusions: We developed a slow triple kVp switching data acquisition scheme and a CNN-based data processing pipeline. Results from a digital phantom validation illustrate the potential for future applications of dual-contrast agent protocols on practically available single-energy CT systems.
Keyphrases
- image quality
- dual energy
- computed tomography
- contrast enhanced
- convolutional neural network
- magnetic resonance
- high resolution
- positron emission tomography
- deep learning
- magnetic resonance imaging
- electronic health record
- molecular dynamics
- climate change
- emergency department
- patient safety
- human health
- mass spectrometry
- adverse drug
- pet ct