Login / Signup

Deep learning enables automated scoring of liver fibrosis stages.

Yang YuJiahao WangChan Way NgYukun MaShupei MoEliza Li Shan FongJiangwa XingZiwei SongYufei XieKe SiAileen WeeRoy E WelschPeter T C SoHanry Yu
Published in: Scientific reports (2018)
Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85-0.95 versus ANN (AUROC of up to 0.87-1.00), MLR (AUROC of up to 0.73-1.00), SVM (AUROC of up to 0.69-0.99) and RF (AUROC of up to 0.94-0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.
Keyphrases