Login / Signup

Potassium Poly(heptazine imide) Coupled with Ti 3 C 2 MXene-Derived TiO 2 as a Composite Photocatalyst for Efficient Pollutant Degradation.

Binbin ChenWeiwei LuPeng XuKaisheng Yao
Published in: ACS omega (2023)
The photocatalytic degradation of pollutants is an effective and sustainable way to solve environmental problems, and the key is to develop an efficient, low-cost, and stable photocatalyst. Polymeric potassium poly(heptazine imide) (K-PHI), as a new member of the carbon nitride family, is a promising candidate but is characterized by a high charge recombination rate. To solve this problem, K-PHI was in-situ composited with MXene Ti 3 C 2 -derived TiO 2 to construct a type-II heterojunction. The morphology and structure of composite K-PHI/TiO 2 photocatalysts were characterized via different technologies, including TEM, XRD, FT-IR, XPS, and UV-vis reflectance spectra. Robust heterostructures and tight interactions between the two components of the composite were verified. Furthermore, the K-PHI/TiO 2 photocatalyst showed excellent activity for Rhodamine 6G removal under visible light illumination. When the weight percent of K-PHI in the original mixture of K-PHI and Ti 3 C 2 was set to 10%, the prepared K-PHI/TiO 2 composite photocatalyst shows the highest photocatalytic degradation efficiency as high as 96.3%. The electron paramagnetic resonance characterization indicated that the · OH radical is the active species accounting for the degradation of Rhodamine 6G.
Keyphrases
  • visible light
  • low cost
  • ionic liquid
  • dna damage
  • mental health
  • drug delivery
  • body mass index
  • fluorescent probe
  • oxidative stress
  • weight loss
  • gold nanoparticles
  • weight gain
  • physical activity