Login / Signup

Duplex DNA Retains the Conformational Features of Single Strands: Perspectives from MD Simulations and Quantum Chemical Computations.

Amedeo CapobiancoAlessandro LandiAndrea Peluso
Published in: International journal of molecular sciences (2022)
Molecular dynamics simulations and geometry optimizations carried out at the quantum level as well as by quantum mechanical/molecular mechanics methods predict that short, single-stranded DNA oligonucleotides adopt conformations very similar to those observed in crystallographic double-stranded B-DNA, with rise coordinates close to ≈3.3 Å. In agreement with the experimental evidence, the computational results show that DNA single strands rich in adjacent purine nucleobases assume more regular arrangements than poly-thymine. The preliminary results suggest that single-stranded poly-cytosine DNA should also retain a substantial helical order in solution. A comparison of the structures of single and double helices confirms that the B-DNA motif is a favorable arrangement also for single strands. Indeed, the optimal geometry of the complementary single helices is changed to a very small extent in the formation of the duplex.
Keyphrases
  • circulating tumor
  • single molecule
  • molecular dynamics simulations
  • molecular dynamics
  • cell free
  • nucleic acid
  • high resolution
  • molecular docking
  • quantum dots
  • monte carlo